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ABSTRACT 1H longitudinal relaxation time profiles (T1) at different proton

Larmor frequencies were registered for a solid-state plant tissue by using fast

field cycling (FFC) nuclear magnetic resonance (NMR) spectroscopy. T1

distributions were obtained and the curves deconvoluted in order to

differentiate among the different T1 components. Among the components,

two were assigned to hydrophobic (e.g., fatty acid) and hydrophilic (e.g.,

saccharide) molecular systems, whereas the others were attributed to bulk

and bound water. This paper shows for the first time solid-state FFC-NMR

spectroscopy applied to plant tissue and reveals that relaxometry is a very

promising technique for studying plant systems.

KEYWORDS eggplant, FFC-NMR relaxometry, molecular dynamics, NMRD

profile, nuclear magnetic resonance spectroscopy, plant systems

INTRODUCTION

Nuclear magnetic resonance (NMR) relaxation studies at low magnetic

fields probe the molecular dynamics of very complex systems such as

food,[1–5] seeds,[6,7] archaeological materials,[8] nanoporous media,[9] and

environmental matrices[10] through measurements of longitudinal (T1) and

transversal (T2) relaxation times.[11–14]

In the basic NMR dispersion (NMRD) or fast field cycling NMR (FFC-NMR)

setup, the Zeeman magnetic field (B0) cycles through three different values

usually indicated as Bpol, Brelax, and Bacq.
[12,13] Bpol is applied for a limited

and fixed period of time in order to achieve magnetization saturation and

sensitivity enhancement.[12] Then, the magnetic field is switched to a new

one, Brelax, applied for a period (s) during which the intensity of the mag-

netization changes (or relaxes) to reach a new equilibrium condition.

Finally, the application of the magnetic field Bacq makes the magnetization

observable and the free induction decay (FID) acquirable. The relaxation

times of the observed nuclei are obtained at each fixed Brelax intensity

through a progressive variation of the s values. The set of relaxation times

measured by changing the intensity of Brelax describes the variations of

the longitudinal relaxation rates (R1¼ 1=T1) as a function of the applied
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magnetic field strength.[14] The R1 versus Brelax

curves represent the NMRD profiles. Such profiles

can be related to physical=chemical properties of

complex materials.[11–14] For example, 1H-NMRD

analyses of hen eggs revealed that quality loss during

the first few days of storage can be associated with

acidity increase arising from carbon dioxide diffusion

through the eggshell,[15] while two-stage gelation

process (first formation of strongly linked dimers,

then weak interdimer aggregations) was discovered

for CaCl2 low methoxyl pectin water solutions.[16]

Moreover, NMRD investigations were also used to

study the binding sites of some globular proteins[17]

and the catalytic properties of metalloporphyrins.[18]

Up to now, the majority of the NMRD measure-

ments were done in the liquid or semisolid state.[11]

Only few works have been done in the solid state.

This is due to technical limits related to the general

rapid relaxation times of solid systems, which

demand high-power pulses and fast receiver and

probe recovery after excitation for characterization.[11]

In this paper, preliminary results on 1H-NMRD

analyses of the fruit of a wild relative of eggplant

are described. Solid-state longitudinal relaxation time

(T1) profiles are discussed, and the different T1

components are assigned to the various molecular

systems forming the fruit tissues of the wild relative

of eggplant.

MATERIALS AND METHODS

Sample

Fruit samples from Solanum aethiopicum gr.

integrifolium (a wild relative of Solanum melongena

L.) were obtained from the Consiglio per la Speri-

mentazione in Agricoltura–CRA (Montanaro Lom-

bardo, Italy). Ten fruits of the wild relative of

eggplant were first freeze-dried, then powdered by

using liquid N2 and mixed to obtain a homogeneous

mixture. The solid mixture was analyzed without

further manipulation.

NMRD Experiments and Data

Elaboration
1H-NMRD data were recorded on a Stelar

Spinmaster-FFC-2000 field-cycling relaxometer

(Stelar S.n.c., Mede, PV, Italy) at a temperature of

300K and by measuring the longitudinal magnetization

evolution at different magnetic field strengths (Brelax,

see the Introduction for other details) corresponding

with proton Larmor frequencies of 0.01, 0.1, 1, 10,

and 20MHz. Proton spins were first polarized at Bpol

see the Introduction for 0.1 s. The magnetic field was

then switched to Brelax, (see the Introduction) which

was applied for a period s arrayed with 64 values

varying from 1 to 1000ms. s array was chosen in a

geometric progression in order to cover the entire

relaxation curve of interest. Finally, a 16.3-MHz Bacq

was used to obtain observable magnetization and

reveal free induction decay (FID) with a time domain

of 512 points. Eight scans were accumulated. The

experimental data were processed with the UPEN

algorithm (Alma Mater Studiorum–Università di

Bologna), thereby obtaining T1 distributions.[19,20]

The T1 distribution curves were exported to

OriginPro 7.5 SR6 (version 7.5885; OriginLab Corpo-

ration, Northampton, MA, USA) in order to perform

deconvolution with Gaussian functions and to

recover the different components giving rise to

the longitudinal relaxation time distributions. The

Gaussian curves were combined to obtain the best

fitting of the experimental data. Deconvolution

was considered optimum when the coefficient of

determination (R2) for the best fitting resulted �0.98.

RESULTS AND DISCUSSION

Figure 1 shows the T1 distributions of the wild rela-

tive of the eggplant fruit at different proton Larmor

frequencies (1H LF). All the distributions were decon-

voluted (dotted curves) to recover information on the

different T1 components provided by the experimen-

tal data (black dots). The full lines in Figure 1 were

obtained as combination of the deconvoluted dotted

curves in order to retrieve the best fitting of the

experimental data (see Materials and Methods).

With the exception of the T1 distribution at the 1H

LF¼ 1MHz (Fig. 1c), a component at T1¼ 100ms was

observed when 1H LF was 0.01, 0.1, 10, and 20MHz

(Figs. 1a, b, d, and e, respectively). A second compo-

nent appeared at 30ms in the distributions at 0.01, 0.1,

and 10MHz (Figs. 1a, b, and d, respectively), whereas

the profile at 1H LF¼ 20MHz revealed a component at

T1¼ 50ms (Fig. 1e).

According to J�oohannesson et al.,[17] dispersionless

T1 NMRD profiles (i.e., no T1 changes with 1H
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Larmor frequency) can be associated with non–

water-interacting molecular systems. Conversely, T1

dispersion (i.e., changes of T1 value with the proton

Larmor frequency) is observed when water interacts

with hydrophilic organic materials.

Plant systems are very complex systems where

hydrophilic moieties (e.g., polysaccharides in cell

membrane structures) are localized near hydropho-

bic structures such as, for example, those building

the phospholipid bilayers in cell membranes.

Moreover, many other molecules are inside cell

membranes. Among those, cell-water–dissolved

secondary metabolites must also be considered.[21]

Due to molecular complexity, it was impossible

to univocally assign to a sole specific molecule both

T1 dispersiveless and T1 dispersive components.

However, it can be reasonably hypothesized that

the dispersiveless component at 100ms was due

to the molecular hydrophobic systems, which are

distant from cell water.[17] On the contrary, the T1

dispersive component can be assigned to the hydro-

philic cell moieties,[17] such as polysaccharides,

which may directly interact with the cell water still

present in the fruit sample of the wild relative of

the eggplant.

Figures 1a and 1b also show a broad T1 distribu-

tion in the shortest T1 interval. This T1 distribution

contains only one component centered at 5ms at
1H LF¼ 0.01MHz (Fig. 1a), whereas it reveals two

components (centered at 1 and 2.5ms, respectively)

at 1H LF¼ 0.1MHz (Fig. 1b). Clearly, the broad T1

distribution in the shortest T1 interval is made by

T1 dispersive components.

Having already assigned hydrophobic and

hydrophilic moieties to the distribution at the longest

longitudinal proton relaxation times, the only other

FIGURE 1 T1 profiles of the eggplant fruit at different proton Larmor frequencies (1H LF). (a) 1H LF= 0.01MHz; (b) 1H LF=0.1MHz; (c)
1H LF=1MHz; (d) 1H LF=10MHz; (e) 1H LF=20MHz. The black dots are the experimental data. The dashed lines represent the different

T1 components as obtained by deconvolution. The full lines are the fitting of the experimental data obtained by deconvolution.
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proton-rich molecular system to be considered is the

intracell water still present in the freeze-dried plant

fruit cells.

As reported in the literature,[22] two different kinds

of water must be distinguished in complex

H2O-containing systems: a slow-moving bound

water and a fast-moving bulk water. Because longitu-

dinal proton relaxation time values in the solid-state

NMR are directly related to molecular motions (the

faster the molecular motions, the shorter are the T1

values),[23] it can be argued that the T1 value for

the bound water must be longer than that of the bulk

H2O. According to this interpretation, the component

at 2.5ms can be assigned to bound water, whereas

that at 1ms must be attributed to bulk water.

The T1 distributions of both H2O components

collapsed together at 1H LF¼ 0.01MHz (Fig. 1a). At

the moment, due to a lack of literature on this

subject, no explanations are available to understand

why the two water components were undistinguish-

able at the lowest 1H LF value. Deeper NMRD

investigations are needed to comprehend the T1

behavior at the lowest Brelax values of water systems

in plant tissues.

In the current paper, the T1 profile recovered at the

proton Larmor frequency of 1MHz is not discussed.

Figure 1c shows that the T1 distribution at 1H

LF¼ 1MHz presents a very broad plateau. To the best

of our knowledge, there are no explanations available

in literature to understand why the plant tissue sample

used in this study behaved as reported in Figure 1c. It

must be stated that the deconvolution pattern

reported in Figure 1c is only an attempt to find the

best fitting for the experimental results. Many other

deconvolution patterns, equally satisfying from a

mathematical point of view, were found to fit as well

for the experimental data. All the deconvolution

patterns were made by T1 components appearing in

several different positions, thereby preventing any

definitive conclusion on the nature of the components

giving rise to the profile at 1MHz (Fig. 1c).

CONCLUSIONS

To the best of our knowledge, this preliminary

study reported for the first time solid-state NMRD

profiles of plant tissues. Namely, analyses of the fruit

from Solanum aethiopicum gr. integrifolium, which

is a wild relative of Solanum melongena L., were

carried out. Two different T1 components assigned

to hydrophobic (e.g., fatty acid) and hydrophilic

(e.g., polysaccharide) organic systems were recog-

nized. Moreover, two other T1 components were

assigned to the bulk and the bound water normally

present in plant tissues. However, due to the preli-

minary nature of this work, further studies on

solid-state NMRD profiles of plant tissues are needed

for a better comprehension of the dependency of the

T1 components on the proton Larmor frequency

values. Notwithstanding the limits of the technique

(it is a low-field NMR approach, thereby preventing

the recovering of classic high resolved NMR finger-

printings), this preliminary study, done on freeze-

dried plant tissues, suggests that NMRD spectroscopy

holds a great potential also for the characterization of

intact and still living plant systems.
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